

Day 2 - Domain and Inverse

Agenda

- Warm UP
- HW Review
- Unit 4 Parent Graphs Day 2 Notes
- Classwork
- Homework: Day 2 HW (in packet)

Objective:

I can find the domain and range of a function from a graph or equation.
I can find the inverse of a function and then state its domain and range.

Warm Up

Let
$$f(x) = -3x+7$$
 and $g(x) = 2x^2-8$

- 1. Find f(g(x))
- 2. Find $(g \circ f)(x)$
- 3. Find f(g(3))

Warm Up (cont.)

List the domain and range of the graph

List of #'s

Domain: [-8,6)

lange: [-3,5]

VI. Finding the Domain From A Function:

Domain: the set of all real numbers for which the expression is defined

The Domain of a Function: Always All Real Numbers, EXCEPT for the following cases.

Fractions: **Denominator** ≠ **Zero**

Where is it undefined?

- 1. Set denominator = 0
- 2. Solve for x
- 3. The value of x is NOT in the domain.

Example:
$$f(x) = \frac{2}{x-3}$$

D: (-0,3) U(3,00)

Radicals: Must ALWAYS be positive square root $\sqrt{+}$

Where is it undefined?

- 1. Set inside = 0
- 2. Solve for x
- 3. Use graphing calc. to see where it is defined

Practice Together: Find the domain and write in interval notation.

Partner Practice (10mins)

Find the Domain of the following functions.

1.
$$f(x) = 2x + 4$$

3.
$$f(x) = \frac{x+4}{x-4}$$

5.
$$j(x) = \frac{x^2+4x}{x^2-4x+3}$$

7.
$$l(x) = \frac{x+3}{\sqrt{x+4}}$$

9.
$$n(x) = \sqrt{8-2x}$$

2.
$$f(x) = x^2 - 16$$

4.
$$f(x) = \frac{2x+4}{x^2-9}$$

6.
$$k(x) = \sqrt{x+4}$$

8.
$$m(x) = 5 + \sqrt{2x-6}$$

10.
$$p(x) = \sqrt{x^2 + 4x - 5}$$

Warm Up

• Find the domain of the following function: $\frac{\sqrt{x-2}}{x^2-x-6}$

VII. Inverse Functions:

An inverse is a relation that performs the opposite operation on x (the domain). The domain of f(x) is the range of f(x)

Examples:

INVEYSE function

1.
$$f(x) = x - 3$$

 $f^{-1}(x) = k + 3$

2.
$$g(x) = \sqrt{x}, x \ge 0$$

 $g^{-1}(x) = x^{2}$

3.
$$h(x) = 2x$$

 $h^{-1}(x) = \frac{x}{2}$

How do we know if an inverse function exists?

Inverse functions only exist if the original function is one to one (which means there are no repeated y-values).

Horizontal Line Test: Used to test if the function as one to one

- -If the horizontal line intersects the graph more than once, then it is NOT one to one.
- -Therefore there is not an inverse function and we call it an inverse relation.

Examples: Look at the following graphs and determine if an inverse function is possible.

1.
$$f(x) = x^2 - 4x + 7$$

$$2. f(x) = x^3$$

3.
$$f(x) = x^3 + 3x^2 - x - 1$$

Finding Inverse Functions Graphically:

Sketch the graph of f(x) = 4x - 4 and $f^{-1}(x) = \frac{1}{4}x + 1$.

We say the function and its inverse are symmetric over the line 4 = 1.

parent graph of a linear function!

Finding the Inverse Function Algebraically:

- 1. Use the horizontal line test to determine if f has an inverse function.
- 2. Write as y=
- 3. Switch x and y
- 4. Solve for y
 5. Rewrite as y^{-1} or $f^{-1}(x)$

Examples:

1.
$$f(x) = -4x - 9$$

 $y = -4x - 9$
 $x = -4y - 9$
 $y = -4x - 9$

$$\frac{x+9}{-4} = y$$
 give y a name! $2x = 5-3y$
 -5 -5 -5 -5
 $4x = 5-3y$
 $-5 = -3y$
 $-5 = -3y$

2.
$$f(x) = \frac{5-3x}{2}$$

 $y = \frac{5}{2} - \frac{3}{2}x$

$$2. X = \frac{5-34}{2}.2$$

$$3x = 5 - 3y$$

$$\frac{2\times -5}{-3} = -\frac{34}{-3}$$

3.
$$f(x) = \sqrt[3]{10 + x}$$

 $y = \sqrt[3]{10 + x}$
 $(x) = \sqrt[3]{3} \sqrt{10 + y}$
 $x = \sqrt[3]{10 + y}$

$$\chi^{3}-10=4$$
 $f^{-1}(x)=\chi^{3}-10$

Domain, Operations of Function, and Inverse Practice WKS